Home
Search results “Data mining algorithms r”
Top 5 Algorithms used in Data Science | Data Science Tutorial | Data Mining Tutorial | Edureka
 
01:13:27
( Data Science Training - https://www.edureka.co/data-science ) This tutorial will give you an overview of the most common algorithms that are used in Data Science. Here, you will learn what activities Data Scientists do and you will learn how they use algorithms like Decision Tree, Random Forest, Association Rule Mining, Linear Regression and K-Means Clustering. To learn more about Data Science click here: http://goo.gl/9HsPlv The topics related to 'R', Machine learning and Hadoop and various other algorithms have been extensively covered in our course “Data Science”. For more information, Please write back to us at [email protected] or call us at IND: 9606058406 / US: 18338555775 (toll free). Instagram: https://www.instagram.com/edureka_learning/ Facebook: https://www.facebook.com/edurekaIN/ Twitter: https://twitter.com/edurekain LinkedIn: https://www.linkedin.com/company/edureka
Views: 107218 edureka!
K-Means Clustering Algorithm - Cluster Analysis | Machine Learning Algorithm | Data Science |Edureka
 
50:19
( Data Science Training - https://www.edureka.co/data-science ) This Edureka k-means clustering algorithm tutorial video (Data Science Blog Series: https://goo.gl/6ojfAa) will take you through the machine learning introduction, cluster analysis, types of clustering algorithms, k-means clustering, how it works along with an example/ demo in R. This Data Science with R tutorial video is ideal for beginners to learn how k-means clustering work. You can also read the blog here: https://goo.gl/QM8on4 Subscribe to our channel to get video updates. Hit the subscribe button above. Check our complete Data Science playlist here: https://goo.gl/60NJJS #kmeans #clusteranalysis #clustering #datascience #machinelearning How it Works? 1. There will be 30 hours of instructor-led interactive online classes, 40 hours of assignments and 20 hours of project 2. We have a 24x7 One-on-One LIVE Technical Support to help you with any problems you might face or any clarifications you may require during the course. 3. You will get Lifetime Access to the recordings in the LMS. 4. At the end of the training you will have to complete the project based on which we will provide you a Verifiable Certificate! - - - - - - - - - - - - - - About the Course Edureka's Data Science course will cover the whole data life cycle ranging from Data Acquisition and Data Storage using R-Hadoop concepts, Applying modelling through R programming using Machine learning algorithms and illustrate impeccable Data Visualization by leveraging on 'R' capabilities. - - - - - - - - - - - - - - Why Learn Data Science? Data Science training certifies you with ‘in demand’ Big Data Technologies to help you grab the top paying Data Science job title with Big Data skills and expertise in R programming, Machine Learning and Hadoop framework. After the completion of the Data Science course, you should be able to: 1. Gain insight into the 'Roles' played by a Data Scientist 2. Analyse Big Data using R, Hadoop and Machine Learning 3. Understand the Data Analysis Life Cycle 4. Work with different data formats like XML, CSV and SAS, SPSS, etc. 5. Learn tools and techniques for data transformation 6. Understand Data Mining techniques and their implementation 7. Analyse data using machine learning algorithms in R 8. Work with Hadoop Mappers and Reducers to analyze data 9. Implement various Machine Learning Algorithms in Apache Mahout 10. Gain insight into data visualization and optimization techniques 11. Explore the parallel processing feature in R - - - - - - - - - - - - - - Who should go for this course? The course is designed for all those who want to learn machine learning techniques with implementation in R language, and wish to apply these techniques on Big Data. The following professionals can go for this course: 1. Developers aspiring to be a 'Data Scientist' 2. Analytics Managers who are leading a team of analysts 3. SAS/SPSS Professionals looking to gain understanding in Big Data Analytics 4. Business Analysts who want to understand Machine Learning (ML) Techniques 5. Information Architects who want to gain expertise in Predictive Analytics 6. 'R' professionals who want to captivate and analyze Big Data 7. Hadoop Professionals who want to learn R and ML techniques 8. Analysts wanting to understand Data Science methodologies For more information, Please write back to us at [email protected] or call us at IND: 9606058406 / US: 18338555775 (toll free). Instagram: https://www.instagram.com/edureka_learning/ Facebook: https://www.facebook.com/edurekaIN/ Twitter: https://twitter.com/edurekain LinkedIn: https://www.linkedin.com/company/edureka Customer Reviews: Gnana Sekhar Vangara, Technology Lead at WellsFargo.com, says, "Edureka Data science course provided me a very good mixture of theoretical and practical training. The training course helped me in all areas that I was previously unclear about, especially concepts like Machine learning and Mahout. The training was very informative and practical. LMS pre recorded sessions and assignmemts were very good as there is a lot of information in them that will help me in my job. The trainer was able to explain difficult to understand subjects in simple terms. Edureka is my teaching GURU now...Thanks EDUREKA and all the best. "
Views: 72542 edureka!
Apriori Algorithm in R | Market Basket Analysis in R | Association Rule Mining Data Science Tutorial
 
13:49
In this Intellipaat's association rule mining data science tutorial you will learn Apriori algorithm in r and market basket analysis in r with hands on apriori algorithm example. You will also learn how to implement the apriori algorithm, understand the various aspects of apriori algorithm in r as part of the data science tutorial. Intellipaat Data Science Course:- https://intellipaat.com/data-scientist-course-training/ Apriori algorithm is use in association rule learning and in frequent item set mining which is deployed over a transactional database. It is extensively used for finding out the various frequent items within a database and then extending it to a large set of items provided those items appear frequently in the database. The apriori algorithm in r is used for determining the association rule in a database that specifies the general trend in a database. Interested to learn more about Data Science? Please check similar blogs here:- https://goo.gl/94cLeV Watch complete Data Science tutorials here:- https://goo.gl/XHuUPc Are you looking for something more? Enroll in our Data Science course & become a certified Data Science Professional (https://goo.gl/yaU9Lf). It is a 40 hrs instructor led Data Science training provided by Intellipaat which is completely aligned with industry standards and certification bodies. If you’ve enjoyed this unsupervised learning algorithms tutorial, Like the video and Subscribe to our channel for more similar informative Data Science tutorials. Got any questions about machine learning algorithms? Ask us in the comment section below. ---------------------------- Intellipaat Edge 1. 24*7 Life time Access & Support 2. Flexible Class Schedule 3. Job Assistance 4. Mentors with +14 yrs 5. Industry Oriented Course ware 6. Life time free Course Upgrade ------------------------------ Why should you watch this Apriori algorithm in R video? Today r is a very important programming language used for data science. Apriori algorithm is finding increased application in today’s world thanks to the need for using a lot of association rule like the market basket analysis, recommender systems and more. Upon finishing watching this data science tutorial video you will be in a position to implement apriori algorithm. Why Data Science is important? Data Science is taking over each and every industry domain. Machine Learning and especially Deep Learning are the most important aspects of Data Science that are being deployed everywhere from search engines to online movie recommendations. Taking the Intellipaat Data Science training & Data Science course can help professionals to build a solid career in a rising technology domain and get the best jobs in top organizations. Why should you opt for a Data Science career? If you want to fast-track your career then you should strongly consider Data Science. The reason for this is that it is one of the fastest growing technology. There is a huge demand for Data Scientist. The salaries for Data Scientist is fantastic.There is a huge growth opportunity in this domain as well. Hence this Intellipaat Data Science with r tutorial is your stepping stone to a successful career! #AprioriAlgorithmInR #AssociationRuleMiningDataScienceTutorial #MarketBasketAnalysisInR ------------------------------ For more Information: Please write us to [email protected], or call us at: +91- 7847955955 Website: https://goo.gl/VL4h3Q Facebook: https://www.facebook.com/intellipaatonline LinkedIn: https://www.linkedin.com/in/intellipaat/ Twitter: https://twitter.com/Intellipaat
Views: 900 Intellipaat
data mining fp growth | data mining fp growth algorithm | data mining fp tree example | fp growth
 
14:17
In this video FP growth algorithm is explained in easy way in data mining Thank you for watching share with your friends Follow on : Facebook : https://www.facebook.com/wellacademy/ Instagram : https://instagram.com/well_academy Twitter : https://twitter.com/well_academy data mining algorithms in hindi, data mining in hindi, data mining lecture, data mining tools, data mining tutorial, data mining fp tree example, fp growth tree data mining, fp tree algorithm in data mining, fp tree algorithm in data mining example, fp tree in data mining, data mining fp growth, data mining fp growth algorithm, data mining fp tree example, data mining fp tree example, fp growth tree data mining, fp tree algorithm in data mining, fp tree algorithm in data mining example, fp tree in data mining, data mining, fp growth algorithm, fp growth algorithm example, fp growth algorithm in data mining, fp growth algorithm in data mining example, fp growth algorithm in data mining examples ppt, fp growth algorithm in data mining in hindi, fp growth algorithm in r, fp growth english, fp growth example, fp growth example in data mining, fp growth frequent itemset, fp growth in data mining, fp growth step by step, fp growth tree
Views: 164085 Well Academy
Data Mining Lecture - - Finding frequent item sets | Apriori Algorithm | Solved Example (Eng-Hindi)
 
13:19
In this video Apriori algorithm is explained in easy way in data mining Thank you for watching share with your friends Follow on : Facebook : https://www.facebook.com/wellacademy/ Instagram : https://instagram.com/well_academy Twitter : https://twitter.com/well_academy data mining in hindi, Finding frequent item sets, data mining, data mining algorithms in hindi, data mining lecture, data mining tools, data mining tutorial,
Views: 261548 Well Academy
Rattle - Data Mining in R
 
25:47
Overview of using Rattle - a GUI data mining tool in R. Overview covers some of the basic operations that can be performed in Rattle such as loading data, exploring the data and applying some of the data mining algorithms on the data - all this without actually having to type any R code
Views: 38628 Melvin L
Logistic Regression in R | Machine Learning Algorithms | Data Science Training | Edureka
 
01:09:12
( Data Science Training - https://www.edureka.co/data-science ) This Logistic Regression Tutorial shall give you a clear understanding as to how a Logistic Regression machine learning algorithm works in R. Towards the end, in our demo we will be predicting which patients have diabetes using Logistic Regression! In this Logistic Regression Tutorial video you will understand: 1) The 5 Questions asked in Data Science 2) What is Regression? 3) Logistic Regression - What and Why? 4) How does Logistic Regression Work? 5) Demo in R: Diabetes Use Case 6) Logistic Regression: Use Cases Subscribe to our channel to get video updates. Hit the subscribe button above. Check our complete Data Science playlist here: https://goo.gl/60NJJS #LogisticRegression #Datasciencetutorial #Datasciencecourse #datascience How it Works? 1. There will be 30 hours of instructor-led interactive online classes, 40 hours of assignments and 20 hours of project 2. We have a 24x7 One-on-One LIVE Technical Support to help you with any problems you might face or any clarifications you may require during the course. 3. You will get Lifetime Access to the recordings in the LMS. 4. At the end of the training you will have to complete the project based on which we will provide you a Verifiable Certificate! - - - - - - - - - - - - - - About the Course Edureka's Data Science course will cover the whole data life cycle ranging from Data Acquisition and Data Storage using R-Hadoop concepts, Applying modelling through R programming using Machine learning algorithms and illustrate impeccable Data Visualization by leveraging on 'R' capabilities. - - - - - - - - - - - - - - Why Learn Data Science? Data Science training certifies you with ‘in demand’ Big Data Technologies to help you grab the top paying Data Science job title with Big Data skills and expertise in R programming, Machine Learning and Hadoop framework. After the completion of the Data Science course, you should be able to: 1. Gain insight into the 'Roles' played by a Data Scientist 2. Analyse Big Data using R, Hadoop and Machine Learning 3. Understand the Data Analysis Life Cycle 4. Work with different data formats like XML, CSV and SAS, SPSS, etc. 5. Learn tools and techniques for data transformation 6. Understand Data Mining techniques and their implementation 7. Analyse data using machine learning algorithms in R 8. Work with Hadoop Mappers and Reducers to analyze data 9. Implement various Machine Learning Algorithms in Apache Mahout 10. Gain insight into data visualization and optimization techniques 11. Explore the parallel processing feature in R - - - - - - - - - - - - - - Who should go for this course? The course is designed for all those who want to learn machine learning techniques with implementation in R language, and wish to apply these techniques on Big Data. The following professionals can go for this course: 1. Developers aspiring to be a 'Data Scientist' 2. Analytics Managers who are leading a team of analysts 3. SAS/SPSS Professionals looking to gain understanding in Big Data Analytics 4. Business Analysts who want to understand Machine Learning (ML) Techniques 5. Information Architects who want to gain expertise in Predictive Analytics 6. 'R' professionals who want to captivate and analyze Big Data 7. Hadoop Professionals who want to learn R and ML techniques 8. Analysts wanting to understand Data Science methodologies For more information, Please write back to us at [email protected] or call us at IND: 9606058406 / US: 18338555775 (toll free). Instagram: https://www.instagram.com/edureka_learning/ Facebook: https://www.facebook.com/edurekaIN/ Twitter: https://twitter.com/edurekain LinkedIn: https://www.linkedin.com/company/edureka Customer Reviews: Gnana Sekhar Vangara, Technology Lead at WellsFargo.com, says, "Edureka Data science course provided me a very good mixture of theoretical and practical training. The training course helped me in all areas that I was previously unclear about, especially concepts like Machine learning and Mahout. The training was very informative and practical. LMS pre recorded sessions and assignmemts were very good as there is a lot of information in them that will help me in my job. The trainer was able to explain difficult to understand subjects in simple terms. Edureka is my teaching GURU now...Thanks EDUREKA and all the best. "
Views: 89565 edureka!
Support Vector Machine Tutorial Using R | SVM Algorithm Explained | Data Science Training | Edureka
 
30:15
** Data Science Certification using R: https://www.edureka.co/data-science ** This session is dedicated to how SVM works, the various features of SVM and how it used in the real world. The following topics will be covered today: (01:15) Introduction to machine learning ((04:15) What is Support Vector Machine (SVM)? (06:19) How does SVM work? (09:35) Non-linear SVM (11:20) SVM Use case (12:43) Hands-On Blog Series: http://bit.ly/data-science-blogs Data Science Training Playlist: http://bit.ly/data-science-playlist - - - - - - - - - - - - - - - - - Subscribe to our channel to get video updates. Hit the subscribe button above: https://goo.gl/6ohpTV Instagram: https://www.instagram.com/edureka_learning/ Facebook: https://www.facebook.com/edurekaIN/ Twitter: https://twitter.com/edurekain LinkedIn: https://www.linkedin.com/company/edureka - - - - - - - - - - - - - - - - - #svmalgorithm #svmwithr #svmclassifier #datascience #datasciencetutorial #datasciencewithr #datasciencecourse #datascienceforbeginners #datasciencetraining #datasciencetutorial - - - - - - - - - - - - - - - - - About the Course Edureka's Data Science course will cover the whole data lifecycle ranging from Data Acquisition and Data Storage using R-Hadoop concepts, Applying modeling through R programming using Machine learning algorithms and illustrate impeccable Data Visualization by leveraging on 'R' capabilities. - - - - - - - - - - - - - - Why Learn Data Science? Data Science training certifies you with ‘in demand’ Big Data Technologies to help you grab the top paying Data Science job title with Big Data skills and expertise in R programming, Machine Learning and Hadoop framework. After the completion of the Data Science course, you should be able to: 1. Gain insight into the 'Roles' played by a Data Scientist 2. Analyze Big Data using R, Hadoop and Machine Learning 3. Understand the Data Analysis Life Cycle 4. Work with different data formats like XML, CSV and SAS, SPSS, etc. 5. Learn tools and techniques for data transformation 6. Understand Data Mining techniques and their implementation 7. Analyze data using machine learning algorithms in R 8. Work with Hadoop Mappers and Reducers to analyze data 9. Implement various Machine Learning Algorithms in Apache Mahout 10. Gain insight into data visualization and optimization techniques 11. Explore the parallel processing feature in R - - - - - - - - - - - - - - Who should go for this course? The course is designed for all those who want to learn machine learning techniques with implementation in R language, and wish to apply these techniques on Big Data. The following professionals can go for this course: 1. Developers aspiring to be a 'Data Scientist' 2. Analytics Managers who are leading a team of analysts 3. SAS/SPSS Professionals looking to gain understanding in Big Data Analytics 4. Business Analysts who want to understand Machine Learning (ML) Techniques 5. Information Architects who want to gain expertise in Predictive Analytics 6. 'R' professionals who want to captivate and analyze Big Data 7. Hadoop Professionals who want to learn R and ML techniques 8. Analysts wanting to understand Data Science methodologies. For online Data Science training, please write back to us at [email protected] or call us at IND: 9606058406 / US: 18338555775 (toll-free) for more information.
Views: 8489 edureka!
OneR Algorithm
 
17:09
Walk through of a OneR (1R) Algorithm. Slides can be found at: https://www.slideshare.net/secret/pAjdEHBmTMqGZk
Views: 2180 MLCollab
Handling Class Imbalance Problem in R: Improving Predictive Model Performance
 
23:29
Provides steps for carrying handling class imbalance problem when developing classification and prediction models Download R file: https://goo.gl/ns7zNm data: https://goo.gl/d5JFtq Includes, - What is Class Imbalance Problem? - Data partitioning - Data for developing prediction model - Developing prediction model - Predictive model evaluation - Confusion matrix, - Accuracy, sensitivity, and specificity - Oversampling, undersampling, synthetic sampling using random over sampling examples predictive models are important machine learning and statistical tools related to analyzing big data or working in data science field. R is a free software environment for statistical computing and graphics, and is widely used by both academia and industry. R software works on both Windows and Mac-OS. It was ranked no. 1 in a KDnuggets poll on top languages for analytics, data mining, and data science. RStudio is a user friendly environment for R that has become popular.
Views: 16138 Bharatendra Rai
Binning | Binning Method | Binning Algorithm | Binning In Data Mining
 
09:09
Binning |Binning Method | Binning Algorithm | Binning In Data Mining ************************************************ the binding of isaac, binning , binnington, equal width binning, binning method, binning algorithm, bin data in r, bin data in excel, binning in excel, binning in data mining, data mining, data mining techniques, data mining tutorial, data mining algorithms, data mining course, data mining excel, r data minin, python data mining, Please Subscribe My Channel
Views: 17454 Learning With Mahamud
Introduction to Cluster Analysis with R - an Example
 
18:11
Provides illustration of doing cluster analysis with R. R File: https://goo.gl/BTZ9j7 Machine Learning videos: https://goo.gl/WHHqWP Includes, - Illustrates the process using utilities data - data normalization - hierarchical clustering using dendrogram - use of complete and average linkage - calculation of euclidean distance - silhouette plot - scree plot - nonhierarchical k-means clustering Cluster analysis is an important tool related to analyzing big data or working in data science field. Deep Learning: https://goo.gl/5VtSuC Image Analysis & Classification: https://goo.gl/Md3fMi R is a free software environment for statistical computing and graphics, and is widely used by both academia and industry. R software works on both Windows and Mac-OS. It was ranked no. 1 in a KDnuggets poll on top languages for analytics, data mining, and data science. RStudio is a user friendly environment for R that has become popular.
Views: 111772 Bharatendra Rai
Machine Learning with R | Machine Learning Algorithms | Data Science Training | Edureka
 
40:36
( Data Science Training : https://www.edureka.co/data-science ) This "Machine Learning with R" video by Edureka will help you to understand the core concepts of Machine Learning followed by a very interesting case study on Pokemon Dataset in R. This tutorial will comprise of these topics: 1. Understanding Machine Learning 2. Applications of Machine Learning 3. Types of Machine Learning Algorithms 4. Case Study on the "Pokemon Dataset" to implement Machine Learning Algorithms Subscribe to our channel to get video updates. Hit the subscribe button above. Check our complete Data Science playlist here: https://goo.gl/60NJJS #LogisticRegression #Datasciencetutorial #Datasciencecourse #datascience How it Works? 1. There will be 30 hours of instructor-led interactive online classes, 40 hours of assignments and 20 hours of project 2. We have a 24x7 One-on-One LIVE Technical Support to help you with any problems you might face or any clarifications you may require during the course. 3. You will get Lifetime Access to the recordings in the LMS. 4. At the end of the training you will have to complete the project based on which we will provide you a Verifiable Certificate! - - - - - - - - - - - - - - About the Course Edureka's Data Science course will cover the whole data life cycle ranging from Data Acquisition and Data Storage using R-Hadoop concepts, Applying modelling through R programming using Machine learning algorithms and illustrate impeccable Data Visualization by leveraging on 'R' capabilities. - - - - - - - - - - - - - - Why Learn Data Science? Data Science training certifies you with ‘in demand’ Big Data Technologies to help you grab the top paying Data Science job title with Big Data skills and expertise in R programming, Machine Learning and Hadoop framework. After the completion of the Data Science course, you should be able to: 1. Gain insight into the 'Roles' played by a Data Scientist 2. Analyse Big Data using R, Hadoop and Machine Learning 3. Understand the Data Analysis Life Cycle 4. Work with different data formats like XML, CSV and SAS, SPSS, etc. 5. Learn tools and techniques for data transformation 6. Understand Data Mining techniques and their implementation 7. Analyse data using machine learning algorithms in R 8. Work with Hadoop Mappers and Reducers to analyze data 9. Implement various Machine Learning Algorithms in Apache Mahout 10. Gain insight into data visualization and optimization techniques 11. Explore the parallel processing feature in R - - - - - - - - - - - - - - Who should go for this course? The course is designed for all those who want to learn machine learning techniques with implementation in R language, and wish to apply these techniques on Big Data. The following professionals can go for this course: 1. Developers aspiring to be a 'Data Scientist' 2. Analytics Managers who are leading a team of analysts 3. SAS/SPSS Professionals looking to gain understanding in Big Data Analytics 4. Business Analysts who want to understand Machine Learning (ML) Techniques 5. Information Architects who want to gain expertise in Predictive Analytics 6. 'R' professionals who want to captivate and analyze Big Data 7. Hadoop Professionals who want to learn R and ML techniques 8. Analysts wanting to understand Data Science methodologies For more information, Please write back to us at [email protected] or call us at IND: 9606058406 / US: 18338555775 (toll free). Instagram: https://www.instagram.com/edureka_learning/ Facebook: https://www.facebook.com/edurekaIN/ Twitter: https://twitter.com/edurekain LinkedIn: https://www.linkedin.com/company/edureka Customer Reviews: Gnana Sekhar Vangara, Technology Lead at WellsFargo.com, says, "Edureka Data science course provided me a very good mixture of theoretical and practical training. The training course helped me in all areas that I was previously unclear about, especially concepts like Machine learning and Mahout. The training was very informative and practical. LMS pre recorded sessions and assignmemts were very good as there is a lot of information in them that will help me in my job. The trainer was able to explain difficult to understand subjects in simple terms. Edureka is my teaching GURU now...Thanks EDUREKA and all the best. "
Views: 28379 edureka!
6 Types of Classification Algorithms
 
02:51
Here are some of the most commonly used classification algorithms -- Logistic Regression, Naïve Bayes, Stochastic Gradient Descent, K-Nearest Neighbours, Decision Tree, Random Forest and Support Vector Machine. https://analyticsindiamag.com/7-types-classification-algorithms/ -------------------------------------------------- Get in touch with us: Website: www.analyticsindiamag.com Contact: [email protected] Facebook: https://www.facebook.com/AnalyticsIndiaMagazine/ Twitter: http://www.twitter.com/analyticsindiam Linkedin: https://www.linkedin.com/company-beta/10283931/ Instagram: https://www.instagram.com/analyticsindiamagazine/
Decision Tree Algorithm & Analysis | Machine Learning Algorithm | Data Science Training | Edureka
 
01:21:31
( Data Science Training - https://www.edureka.co/data-science ) This Edureka Decision Tree tutorial will help you understand all the basics of Decision tree. This decision tree tutorial is ideal for both beginners as well as professionals who want to learn or brush up their Data Science concepts, learn decision tree analysis along with examples. Below are the topics covered in this tutorial: 1) Machine Learning Introduction 2) Classification 3) Types of classifiers 4) Decision tree 5) How does Decision tree work? 6) Demo in R Subscribe to our channel to get video updates. Hit the subscribe button above. Check our complete Data Science playlist here: https://goo.gl/60NJJS #decisiontree #Datasciencetutorial #Datasciencecourse #datascience How it Works? 1. There will be 30 hours of instructor-led interactive online classes, 40 hours of assignments and 20 hours of project 2. We have a 24x7 One-on-One LIVE Technical Support to help you with any problems you might face or any clarifications you may require during the course. 3. You will get Lifetime Access to the recordings in the LMS. 4. At the end of the training you will have to complete the project based on which we will provide you a Verifiable Certificate! - - - - - - - - - - - - - - About the Course Edureka's Data Science course will cover the whole data life cycle ranging from Data Acquisition and Data Storage using R-Hadoop concepts, Applying modelling through R programming using Machine learning algorithms and illustrate impeccable Data Visualization by leveraging on 'R' capabilities. - - - - - - - - - - - - - - Why Learn Data Science? Data Science training certifies you with ‘in demand’ Big Data Technologies to help you grab the top paying Data Science job title with Big Data skills and expertise in R programming, Machine Learning and Hadoop framework. After the completion of the Data Science course, you should be able to: 1. Gain insight into the 'Roles' played by a Data Scientist 2. Analyse Big Data using R, Hadoop and Machine Learning 3. Understand the Data Analysis Life Cycle 4. Work with different data formats like XML, CSV and SAS, SPSS, etc. 5. Learn tools and techniques for data transformation 6. Understand Data Mining techniques and their implementation 7. Analyse data using machine learning algorithms in R 8. Work with Hadoop Mappers and Reducers to analyze data 9. Implement various Machine Learning Algorithms in Apache Mahout 10. Gain insight into data visualization and optimization techniques 11. Explore the parallel processing feature in R - - - - - - - - - - - - - - Who should go for this course? The course is designed for all those who want to learn machine learning techniques with implementation in R language, and wish to apply these techniques on Big Data. The following professionals can go for this course: 1. Developers aspiring to be a 'Data Scientist' 2. Analytics Managers who are leading a team of analysts 3. SAS/SPSS Professionals looking to gain understanding in Big Data Analytics 4. Business Analysts who want to understand Machine Learning (ML) Techniques 5. Information Architects who want to gain expertise in Predictive Analytics 6. 'R' professionals who want to captivate and analyze Big Data 7. Hadoop Professionals who want to learn R and ML techniques 8. Analysts wanting to understand Data Science methodologies For more information, Please write back to us at [email protected] or call us at IND: 9606058406 / US: 18338555775 (toll free). Instagram: https://www.instagram.com/edureka_learning/ Facebook: https://www.facebook.com/edurekaIN/ Twitter: https://twitter.com/edurekain LinkedIn: https://www.linkedin.com/company/edureka Customer Reviews: Gnana Sekhar Vangara, Technology Lead at WellsFargo.com, says, "Edureka Data science course provided me a very good mixture of theoretical and practical training. The training course helped me in all areas that I was previously unclear about, especially concepts like Machine learning and Mahout. The training was very informative and practical. LMS pre recorded sessions and assignmemts were very good as there is a lot of information in them that will help me in my job. The trainer was able to explain difficult to understand subjects in simple terms. Edureka is my teaching GURU now...Thanks EDUREKA and all the best. "
Views: 66188 edureka!
How Artificial Neural Network (ANN) Algorithm Work | Data Mining | Introduction to Neural Network
 
09:58
#ArtificialNeuralNetwork | Beginners guide to how artificial neural network model works. Learn how neural network approaches the problem, why and how the process works in ANN, various ways errors can be used in creating machine learning models and ways to optimise the learning process. - Watch our new free Python for Data Science Beginners tutorial: https://greatlearningforlife.com/python - Visit https://greatlearningforlife.com our learning portal for 100s of hours of similar free high-quality tutorial videos on Python, R, Machine Learning, AI and other similar topics Know More about Great Lakes Analytics Programs: PG Program in Business Analytics (PGP-BABI): http://bit.ly/2f4ptdi PG Program in Big Data Analytics (PGP-BDA): http://bit.ly/2eT1Hgo Business Analytics Certificate Program: http://bit.ly/2wX42PD #ANN #MachineLearning #DataMining #NeuralNetwork About Great Learning: - Great Learning is an online and hybrid learning company that offers high-quality, impactful, and industry-relevant programs to working professionals like you. These programs help you master data-driven decision-making regardless of the sector or function you work in and accelerate your career in high growth areas like Data Science, Big Data Analytics, Machine Learning, Artificial Intelligence & more. - Watch the video to know ''Why is there so much hype around 'Artificial Intelligence'?'' https://www.youtube.com/watch?v=VcxpBYAAnGM - What is Machine Learning & its Applications? https://www.youtube.com/watch?v=NsoHx0AJs-U - Do you know what the three pillars of Data Science? Here explaining all about the pillars of Data Science: https://www.youtube.com/watch?v=xtI2Qa4v670 - Want to know more about the careers in Data Science & Engineering? Watch this video: https://www.youtube.com/watch?v=0Ue_plL55jU - For more interesting tutorials, don't forget to Subscribe our channel: https://www.youtube.com/user/beaconelearning?sub_confirmation=1 - Learn More at: https://www.greatlearning.in/ For more updates on courses and tips follow us on: - Google Plus: https://plus.google.com/u/0/108438615307549697541 - Facebook: https://www.facebook.com/GreatLearningOfficial/ - LinkedIn: https://www.linkedin.com/company/great-learning/ Great Learning has collaborated with the University of Texas at Austin for the PG Program in Artificial Intelligence and Machine Learning and with UT Austin McCombs School of Business for the PG Program in Analytics and Business Intelligence.
Views: 70474 Great Learning
Apriori Algorithm (Associated Learning) - Fun and Easy Machine Learning
 
12:52
Apriori Algorithm (Associated Learning) - Fun and Easy Machine Learning ►FREE YOLO GIFT - http://augmentedstartups.info/yolofreegiftsp ►KERAS Course - https://www.udemy.com/machine-learning-fun-and-easy-using-python-and-keras/?couponCode=YOUTUBE_ML Limited Time - Discount Coupon Apriori Algorithm The Apriori algorithm is a classical algorithm in data mining that we can use for these sorts of applications (i.e. recommender engines). So It is used for mining frequent item sets and relevant association rules. It is devised to operate on a database containing a lot of transactions, for instance, items brought by customers in a store. It is very important for effective Market Basket Analysis and it helps the customers in purchasing their items with more ease which increases the sales of the markets. It has also been used in the field of healthcare for the detection of adverse drug reactions. A key concept in Apriori algorithm is that it assumes that: 1. All subsets of a frequent item sets must be frequent 2. Similarly, for any infrequent item set, all its supersets must be infrequent too. ------------------------------------------------------------ Support us on Patreon ►AugmentedStartups.info/Patreon Chat to us on Discord ►AugmentedStartups.info/discord Interact with us on Facebook ►AugmentedStartups.info/Facebook Check my latest work on Instagram ►AugmentedStartups.info/instagram Learn Advanced Tutorials on Udemy ►AugmentedStartups.info/udemy ------------------------------------------------------------ To learn more on Artificial Intelligence, Augmented Reality IoT, Deep Learning FPGAs, Arduinos, PCB Design and Image Processing then check out http://augmentedstartups.info/home Please Like and Subscribe for more videos :)
Views: 68834 Augmented Startups
K Nearest Neighbor (kNN) Algorithm  | R Programming | Data Prediction Algorithm
 
16:37
In this video I've talked about how you can implement kNN or k Nearest Neighbor algorithm in R with the help of an example data set freely available on UCL machine learning repository.
Views: 43090 Data Science Tutorials
Data mining algorithms with SQL Server and R part 1   Dejan Sarka HD
 
01:32:06
Breakout session from DevWeek 2015 http://devweek.com/ DevWeek is the UK’s leading conference for professional software developers, architects and analysts. With insights on the latest technologies, best practice and frameworks from industry-leading experts, plus hands-on workshop sessions, DevWeek is your chance to sharpen your skills - and ensure every member of your team is up to date. Please visit http://devweek.com/ for information on the latest event. ----------------------------------------­----------------------------------------­----- DevWeek is part of DevWeek Events, a series of software development conferences and workshops, including DevWeek's sister conference 'Software Architect' (http://software-architect.co.uk/), brought to you by Publicis UK. ----------------------------------------­----------------------------------------­-----
Views: 581 DevWeek Events
Data mining algorithms with SQL Server and R part 1 Dejan Sarka HD
 
01:49:36
Breakout session from DevWeek 2017 DevWeek is the UKs leading conference for professional software developers, architects and analysts. With insights on the latest technolog. Breakout session from DevWeek 2017 DevWeek is the UKs leading conference for professional software developers, architects and analysts. With insights on the latest technolog. Breakout session from DevWeek 2017 Breakout session from DevWeek 2017
Views: 3 Taunya Grillo
KNN Algorithm Using R | KNN Algorithm Example | Data Science Training | Edureka
 
24:59
** Data Science Certification using R: https://www.edureka.co/data-science ** This Edureka video on "KNN algorithm using R", will help you learn about the KNN algorithm in depth, you'll also see how KNN is used to solve real-world problems. Below are the topics covered in this module: (00:52) Introduction to Machine Learning (03:45) What is KNN Algorithm? (08:09) KNN Use Case (09:07) KNN Algorithm step by step (12:12) Hands - On (00:52) Introduction to Machine Learning (03:45) What is KNN Algorithm? (08:09) KNN Use Case (09:07) KNN Algorithm step by step (12:12) Hands - On Blog Series: http://bit.ly/data-science-blogs Data Science Training Playlist: http://bit.ly/data-science-playlist - - - - - - - - - - - - - - - - - Subscribe to our channel to get video updates. Hit the subscribe button above: https://goo.gl/6ohpTV Instagram: https://www.instagram.com/edureka_learning Facebook: https://www.facebook.com/edurekaIN/ Twitter: https://twitter.com/edurekain LinkedIn: https://www.linkedin.com/company/edureka - - - - - - - - - - - - - - - - - #knn #datasciencewithr #datasciencecourse #datascienceforbeginners #knnalgorithm #datasciencetraining #datasciencetutorial - - - - - - - - - - - - - - - - - About the Course Edureka's Data Science course will cover the whole data lifecycle ranging from Data Acquisition and Data Storage using R-Hadoop concepts, Applying modeling through R programming using Machine learning algorithms and illustrate impeccable Data Visualization by leveraging on 'R' capabilities. - - - - - - - - - - - - - - Why Learn Data Science? Data Science training certifies you with ‘in demand’ Big Data Technologies to help you grab the top paying Data Science job title with Big Data skills and expertise in R programming, Machine Learning and Hadoop framework. After the completion of the Data Science course, you should be able to: 1. Gain insight into the 'Roles' played by a Data Scientist 2. Analyze Big Data using R, Hadoop and Machine Learning 3. Understand the Data Analysis Life Cycle 4. Work with different data formats like XML, CSV and SAS, SPSS, etc. 5. Learn tools and techniques for data transformation 6. Understand Data Mining techniques and their implementation 7. Analyze data using machine learning algorithms in R 8. Work with Hadoop Mappers and Reducers to analyze data 9. Implement various Machine Learning Algorithms in Apache Mahout 10. Gain insight into data visualization and optimization techniques 11. Explore the parallel processing feature in R - - - - - - - - - - - - - - Who should go for this course? The course is designed for all those who want to learn machine learning techniques with implementation in R language, and wish to apply these techniques on Big Data. The following professionals can go for this course: 1. Developers aspiring to be a 'Data Scientist' 2. Analytics Managers who are leading a team of analysts 3. SAS/SPSS Professionals looking to gain understanding in Big Data Analytics 4. Business Analysts who want to understand Machine Learning (ML) Techniques 5. Information Architects who want to gain expertise in Predictive Analytics 6. 'R' professionals who want to captivate and analyze Big Data 7. Hadoop Professionals who want to learn R and ML techniques 8. Analysts wanting to understand Data Science methodologies. For online Data Science training, please write back to us at [email protected] or call us at IND: 9606058406 / US: 18338555775 (toll-free) for more information.
Views: 5596 edureka!
Linear Regression Algorithm | Linear Regression in R | Data Science Training | Edureka
 
57:06
( Data Science Training - https://www.edureka.co/data-science ) This Edureka Linear Regression tutorial will help you understand all the basics of linear regression machine learning algorithm along with examples. This tutorial is ideal for both beginners as well as professionals who want to learn or brush up their Data Science concepts. Below are the topics covered in this tutorial: 1) Introduction to Machine Learning 2) What is Regression? 3) Types of Regression 4) Linear Regression Examples 5) Linear Regression Use Cases 6) Demo in R: Real Estate Use Case Subscribe to our channel to get video updates. Hit the subscribe button above. Check our complete Data Science playlist here: https://goo.gl/60NJJS #LinearRegression #Datasciencetutorial #Datasciencecourse #datascience How it Works? 1. There will be 30 hours of instructor-led interactive online classes, 40 hours of assignments and 20 hours of project 2. We have a 24x7 One-on-One LIVE Technical Support to help you with any problems you might face or any clarifications you may require during the course. 3. You will get Lifetime Access to the recordings in the LMS. 4. At the end of the training you will have to complete the project based on which we will provide you a Verifiable Certificate! - - - - - - - - - - - - - - About the Course Edureka's Data Science course will cover the whole data life cycle ranging from Data Acquisition and Data Storage using R-Hadoop concepts, Applying modelling through R programming using Machine learning algorithms and illustrate impeccable Data Visualization by leveraging on 'R' capabilities. - - - - - - - - - - - - - - Why Learn Data Science? Data Science training certifies you with ‘in demand’ Big Data Technologies to help you grab the top paying Data Science job title with Big Data skills and expertise in R programming, Machine Learning and Hadoop framework. After the completion of the Data Science course, you should be able to: 1. Gain insight into the 'Roles' played by a Data Scientist 2. Analyse Big Data using R, Hadoop and Machine Learning 3. Understand the Data Analysis Life Cycle 4. Work with different data formats like XML, CSV and SAS, SPSS, etc. 5. Learn tools and techniques for data transformation 6. Understand Data Mining techniques and their implementation 7. Analyse data using machine learning algorithms in R 8. Work with Hadoop Mappers and Reducers to analyze data 9. Implement various Machine Learning Algorithms in Apache Mahout 10. Gain insight into data visualization and optimization techniques 11. Explore the parallel processing feature in R - - - - - - - - - - - - - - Who should go for this course? The course is designed for all those who want to learn machine learning techniques with implementation in R language, and wish to apply these techniques on Big Data. The following professionals can go for this course: 1. Developers aspiring to be a 'Data Scientist' 2. Analytics Managers who are leading a team of analysts 3. SAS/SPSS Professionals looking to gain understanding in Big Data Analytics 4. Business Analysts who want to understand Machine Learning (ML) Techniques 5. Information Architects who want to gain expertise in Predictive Analytics 6. 'R' professionals who want to captivate and analyze Big Data 7. Hadoop Professionals who want to learn R and ML techniques 8. Analysts wanting to understand Data Science methodologies For more information, Please write back to us at [email protected] or call us at IND: 9606058406 / US: 18338555775 (toll free). Instagram: https://www.instagram.com/edureka_learning/ Facebook: https://www.facebook.com/edurekaIN/ Twitter: https://twitter.com/edurekain LinkedIn: https://www.linkedin.com/company/edureka Customer Reviews: Gnana Sekhar Vangara, Technology Lead at WellsFargo.com, says, "Edureka Data science course provided me a very good mixture of theoretical and practical training. The training course helped me in all areas that I was previously unclear about, especially concepts like Machine learning and Mahout. The training was very informative and practical. LMS pre recorded sessions and assignmemts were very good as there is a lot of information in them that will help me in my job. The trainer was able to explain difficult to understand subjects in simple terms. Edureka is my teaching GURU now...Thanks EDUREKA and all the best. "
Views: 71399 edureka!
Decision Tree Classification in R
 
19:21
This video covers how you can can use rpart library in R to build decision trees for classification. The video provides a brief overview of decision tree and the shows a demo of using rpart to create decision tree models, visualise it and predict using the decision tree model
Views: 80751 Melvin L
Decision Tree In R | Decision Tree Algorithm | Data Science Tutorial | Machine Learning |Simplilearn
 
46:21
This Decision Tree in R tutorial video will help you understand what is decision tree, what problems can be solved using decision trees, how does a decision tree work and you will also see a use case implementation in which we do survival prediction using R. Decision tree is one of the most popular Machine Learning algorithms in use today, this is a supervised learning algorithm that is used for classifying problems. It works well classifying for both categorical and continuous dependent variables. In this algorithm, we split the population into two or more homogeneous sets based on the most significant attributes/ independent variables. In simple words, a decision tree is a tree-shaped algorithm used to determine a course of action. Each branch of the tree represents a possible decision, occurrence or reaction. Now let us get started and understand how does Decision tree work. Below topics are explained in this Decision tree in R tutorial : 1. What is Decision tree? 2. What problems can be solved using Decision Trees? 3. How does a Decision Tree work? 4. Use case: Survival prediction in R Subscribe to our channel for more Machine Learning Tutorials: https://www.youtube.com/user/Simplilearn?sub_confirmation=1 You can also go through the Slides here: https://goo.gl/WsM21R Watch more videos on Machine Learning: https://www.youtube.com/watch?v=7JhjINPwfYQ&list=PLEiEAq2VkUULYYgj13YHUWmRePqiu8Ddy #MachineLearningAlgorithms #Datasciencecourse #DataScience #SimplilearnMachineLearning #MachineLearningCourse About Simplilearn Machine Learning course: A form of artificial intelligence, Machine Learning is revolutionizing the world of computing as well as all people’s digital interactions. Machine Learning powers such innovative automated technologies as recommendation engines, facial recognition, fraud protection and even self-driving cars.This Machine Learning course prepares engineers, data scientists and other professionals with knowledge and hands-on skills required for certification and job competency in Machine Learning. Why learn Machine Learning? Machine Learning is taking over the world- and with that, there is a growing need among companies for professionals to know the ins and outs of Machine Learning The Machine Learning market size is expected to grow from USD 1.03 Billion in 2016 to USD 8.81 Billion by 2022, at a Compound Annual Growth Rate (CAGR) of 44.1% during the forecast period. What skills will you learn from this Machine Learning course? By the end of this Machine Learning course, you will be able to: 1. Master the concepts of supervised, unsupervised and reinforcement learning concepts and modeling. 2. Gain practical mastery over principles, algorithms, and applications of Machine Learning through a hands-on approach which includes working on 28 projects and one capstone project. 3. Acquire thorough knowledge of the mathematical and heuristic aspects of Machine Learning. 4. Understand the concepts and operation of support vector machines, kernel SVM, naive Bayes, decision tree classifier, random forest classifier, logistic regression, K-nearest neighbors, K-means clustering and more. 5. Be able to model a wide variety of robust Machine Learning algorithms including deep learning, clustering, and recommendation systems We recommend this Machine Learning training course for the following professionals in particular: 1. Developers aspiring to be a data scientist or Machine Learning engineer 2. Information architects who want to gain expertise in Machine Learning algorithms 3. Analytics professionals who want to work in Machine Learning or artificial intelligence 4. Graduates looking to build a career in data science and Machine Learning Learn more at https://www.simplilearn.com/big-data-and-analytics/machine-learning-certification-training-course?utm_campaign=Decision-Tree-in-R-HmEPCEXn-ZM&utm_medium=Tutorials&utm_source=youtube For more updates on courses and tips follow us on: - Facebook: https://www.facebook.com/Simplilearn - Twitter: https://twitter.com/simplilearn - LinkedIn: https://www.linkedin.com/company/simplilearn - Website: https://www.simplilearn.com Get the Android app: http://bit.ly/1WlVo4u Get the iOS app: http://apple.co/1HIO5J0
Views: 6551 Simplilearn
Market Basket Analysis | Association Rules | R Programming | Data Prediction Algorithm
 
10:37
In this video I've talked about the theory related to market basket analysis. Where I explained about its background and the components like support, confidence and lift. In the next video I'll talk about the code to achieve the association rules by applying market basket analysis in R.
Views: 12044 Data Science Tutorials
Decision Tree with R | Complete Example
 
18:44
Also called Classification and Regression Trees (CART) or just trees. R file: https://goo.gl/Kx4EsU Data file: https://goo.gl/gAQTx4 Includes, - Illustrates the process using cardiotocographic data - Decision tree and interpretation with party package - Decision tree and interpretation with rpart package - Plot with rpart.plot - Prediction for validation dataset based on model build using training dataset - Calculation of misclassification error Decision trees are an important tool for developing classification or predictive analytics models related to analyzing big data or data science. R is a free software environment for statistical computing and graphics, and is widely used by both academia and industry. R software works on both Windows and Mac-OS. It was ranked no. 1 in a KDnuggets poll on top languages for analytics, data mining, and data science. RStudio is a user friendly environment for R that has become popular.
Views: 59123 Bharatendra Rai
Apriori Algorithm with R Studio
 
05:13
This is a video for RMD Sinhgad School of Engineering (BE-Computer) as a demonstration for one of the assignments of Business Analytics and Intelligence. Important Links: Ubuntu 16.04.2 LTS Download: https://www.ubuntu.com/download/desktop R installation instructions: https://www.datascienceriot.com/how-to-install-r-in-linux-ubuntu-16-04-xenial-xerus/kris/ R studio Download: https://www.rstudio.com/products/rstudio/download/ R Tutorial: http://tryr.codeschool.com/
Views: 7814 Varun Joshi
Bagging & Boosting Algorithms | Decision Tree | Data Science
 
17:02
In this video you will learn about theory behind bootstrap method of building decision tree and combining them for better prediction.. This type of algorithms are known as Bagging & boosting or in general known as Ensemble learning . Apart from these two random forest is also a popular ensemble training algorithms ANalytics Study Pack : https://analyticuniversity.com Analytics University on Twitter : https://twitter.com/AnalyticsUniver Analytics University on Facebook : https://www.facebook.com/AnalyticsUniversity Logistic Regression in R: https://goo.gl/S7DkRy Logistic Regression in SAS: https://goo.gl/S7DkRy Logistic Regression Theory: https://goo.gl/PbGv1h Time Series Theory : https://goo.gl/54vaDk Time ARIMA Model in R : https://goo.gl/UcPNWx Survival Model : https://goo.gl/nz5kgu Data Science Career : https://goo.gl/Ca9z6r Machine Learning : https://goo.gl/giqqmx Data Science Case Study : https://goo.gl/KzY5Iu Big Data & Hadoop & Spark: https://goo.gl/ZTmHOA
Views: 10838 Big Edu
Text Mining In R | Natural Language Processing | Data Science Certification Training | Edureka
 
36:29
** Data Science Certification using R: https://www.edureka.co/data-science ** In this video on Text Mining In R, we’ll be focusing on the various methodologies used in text mining in order to retrieve useful information from data. The following topics are covered in this session: (01:18) Need for Text Mining (03:56) What Is Text Mining? (05:42) What is NLP? (07:00) Applications of NLP (08:33) Terminologies in NLP (14:09) Demo Blog Series: http://bit.ly/data-science-blogs Data Science Training Playlist: http://bit.ly/data-science-playlist - - - - - - - - - - - - - - - - - Subscribe to our channel to get video updates. Hit the subscribe button above: https://goo.gl/6ohpTV Instagram: https://www.instagram.com/edureka_learning/ Facebook: https://www.facebook.com/edurekaIN/ Twitter: https://twitter.com/edurekain LinkedIn: https://www.linkedin.com/company/edureka - - - - - - - - - - - - - - - - - #textmining #textminingwithr #naturallanguageprocessing #datascience #datasciencetutorial #datasciencewithr #datasciencecourse #datascienceforbeginners #datasciencetraining #datasciencetutorial - - - - - - - - - - - - - - - - - About the Course Edureka's Data Science course will cover the whole data lifecycle ranging from Data Acquisition and Data Storage using R-Hadoop concepts, Applying modeling through R programming using Machine learning algorithms and illustrate impeccable Data Visualization by leveraging on 'R' capabilities. - - - - - - - - - - - - - - Why Learn Data Science? Data Science training certifies you with ‘in demand’ Big Data Technologies to help you grab the top paying Data Science job title with Big Data skills and expertise in R programming, Machine Learning and Hadoop framework. After the completion of the Data Science course, you should be able to: 1. Gain insight into the 'Roles' played by a Data Scientist 2. Analyze Big Data using R, Hadoop and Machine Learning 3. Understand the Data Analysis Life Cycle 4. Work with different data formats like XML, CSV and SAS, SPSS, etc. 5. Learn tools and techniques for data transformation 6. Understand Data Mining techniques and their implementation 7. Analyze data using machine learning algorithms in R 8. Work with Hadoop Mappers and Reducers to analyze data 9. Implement various Machine Learning Algorithms in Apache Mahout 10. Gain insight into data visualization and optimization techniques 11. Explore the parallel processing feature in R - - - - - - - - - - - - - - Who should go for this course? The course is designed for all those who want to learn machine learning techniques with implementation in R language, and wish to apply these techniques on Big Data. The following professionals can go for this course: 1. Developers aspiring to be a 'Data Scientist' 2. Analytics Managers who are leading a team of analysts 3. SAS/SPSS Professionals looking to gain understanding in Big Data Analytics 4. Business Analysts who want to understand Machine Learning (ML) Techniques 5. Information Architects who want to gain expertise in Predictive Analytics 6. 'R' professionals who want to captivate and analyze Big Data 7. Hadoop Professionals who want to learn R and ML techniques 8. Analysts wanting to understand Data Science methodologies. For online Data Science training, please write back to us at [email protected] or call us at IND: 9606058406 / US: 18338555775 (toll-free) for more information.
Views: 5209 edureka!
K Nearest Neighbor Algorithm (KNN) | Data Science | Big Data
 
20:35
In this video you will learn about the KNN (K Nearest Neighbor Algorithm). KNN is a machine learning / data mining algorithm that is used for regression and classification purpose. This is a non parametric class of algorithms that works well with all kinds of data. The other types of data science algorithms that works similar to KNN are the Support vector machine, Logistic regression, Random forest, decision tree, Neural Network etc. ANalytics Study Pack : https://analyticuniversity.com Analytics University on Twitter : https://twitter.com/AnalyticsUniver Analytics University on Facebook : https://www.facebook.com/AnalyticsUniversity Logistic Regression in R: https://goo.gl/S7DkRy Logistic Regression in SAS: https://goo.gl/S7DkRy Logistic Regression Theory: https://goo.gl/PbGv1h Time Series Theory : https://goo.gl/54vaDk Time ARIMA Model in R : https://goo.gl/UcPNWx Survival Model : https://goo.gl/nz5kgu Data Science Career : https://goo.gl/Ca9z6r Machine Learning : https://goo.gl/giqqmx Data Science Case Study : https://goo.gl/KzY5Iu Big Data & Hadoop & Spark: https://goo.gl/ZTmHOA
Views: 7024 Big Edu
DBSCAN Algorithm : Density Based Spatial Clustering of Applications With Noise | Data Science-ExcelR
 
27:51
ExcelR: In this video, we will learn about, DBSCAN is a well-known data clustering algorithm that is commonly used in data.T he DBSCAN algorithm basically requires 2 parameters. Things you will learn in this video 1)What is density based clustering algorithm (DBSCAN) 2)How to determine EPS? 3)What is the core point? 4)What is a border point? 5)What is noise point? To buy eLearning course on Data Science click here https://goo.gl/oMiQMw To register for classroom training click here https://goo.gl/UyU2ve To Enroll for virtual online training click here " https://goo.gl/JTkWXo" SUBSCRIBE HERE for more updates: https://goo.gl/WKNNPx For K-Means Clustering Tutorial click here https://goo.gl/PYqXRJ For Introduction to Clustering click here Introduction to Clustering | Cluster Analysis #ExcelRSolutions #DBSCAN#Differenttypesofclusterings#EPS#corepoint#borderpoint#noisepoint#DataScienceCertification #DataSciencetutorial #DataScienceforbeginners #DataScienceTraining ----- For More Information: Toll Free (IND) : 1800 212 2120 | +91 80080 09706 Malaysia: 60 11 3799 1378 USA: 001-844-392-3571 UK: 0044 203 514 6638 AUS: 006 128 520-3240 Email: [email protected] Web: www.excelr.com Connect with us: Facebook: https://www.facebook.com/ExcelR/ LinkedIn: https://www.linkedin.com/company/exce... Twitter: https://twitter.com/ExcelrS G+: https://plus.google.com/+ExcelRSolutions
Apriori Algorithm using R tool
 
07:44
watch and learn! for any query comment below
Views: 6008 Vinaykumar Pandey
K mean clustering algorithm with solve example
 
12:13
#kmean datawarehouse #datamining #lastmomenttuitions Take the Full Course of Datawarehouse What we Provide 1)22 Videos (Index is given down) + Update will be Coming Before final exams 2)Hand made Notes with problems for your to practice 3)Strategy to Score Good Marks in DWM To buy the course click here: https://lastmomenttuitions.com/course/data-warehouse/ Buy the Notes https://lastmomenttuitions.com/course/data-warehouse-and-data-mining-notes/ if you have any query email us at [email protected] Index Introduction to Datawarehouse Meta data in 5 mins Datamart in datawarehouse Architecture of datawarehouse how to draw star schema slowflake schema and fact constelation what is Olap operation OLAP vs OLTP decision tree with solved example K mean clustering algorithm Introduction to data mining and architecture Naive bayes classifier Apriori Algorithm Agglomerative clustering algorithmn KDD in data mining ETL process FP TREE Algorithm Decision tree
Views: 441897 Last moment tuitions
Last Minute Tutorials | Apriori algorithm | Association Rule Mining
 
08:49
Please feel free to get in touch with me :) If it helped you, please like my facebook page and don't forget to subscribe to Last Minute Tutorials. Thaaank Youuu. Facebook: https://www.facebook.com/Last-Minute-Tutorials-862868223868621/ Website: www.lmtutorials.com For any queries or suggestions, kindly mail at: [email protected]
Views: 98112 Last Minute Tutorials
Data mining algorithms with SQL Server and R: part 2 Dejan Sarka
 
01:47:41
Breakout session from DevWeek 2017 DevWeek is the UKs leading conference for professional software developers, architects and analysts. With insights on the latest technolog. Breakout session from DevWeek 2017 DevWeek is the UKs leading conference for professional software developers, architects and analysts. With insights on the latest technolog. Breakout session from DevWeek 2017 Breakout session from DevWeek 2017
Views: 7 Taunya Grillo
Naive Bayes Classification Algorithm – Solved Numerical Question 1 in Hindi
 
08:41
Naive Bayes Classification Algorithm – Solved Numerical Question 1 in Hindi Data Warehouse and Data Mining Lectures in Hindi
Frequent Pattern (FP) growth Algorithm for Association Rule Mining
 
24:46
The FP-Growth Algorithm, proposed by Han, is an efficient and scalable method for mining the complete set of frequent patterns by pattern fragment growth, using an extended prefix-tree structure for storing compressed and crucial information about frequent patterns named frequent-pattern tree (FP-tree).
Views: 125041 StudyKorner
Random Forest Tutorial | Random Forest in R | Machine Learning | Data Science Training | Edureka
 
01:07:14
( Data Science Training - https://www.edureka.co/data-science ) This Edureka Random Forest tutorial will help you understand all the basics of Random Forest machine learning algorithm. This tutorial is ideal for both beginners as well as professionals who want to learn or brush up their Data Science concepts, learn random forest analysis along with examples. Below are the topics covered in this tutorial: 1) Introduction to Classification 2) Why Random Forest? 3) What is Random Forest? 4) Random Forest Use Cases 5) How Random Forest Works? 6) Demo in R: Diabetes Prevention Use Case Subscribe to our channel to get video updates. Hit the subscribe button above. Check our complete Data Science playlist here: https://goo.gl/60NJJS #RandomForest #Datasciencetutorial #Datasciencecourse #datascience How it Works? 1. There will be 30 hours of instructor-led interactive online classes, 40 hours of assignments and 20 hours of project 2. We have a 24x7 One-on-One LIVE Technical Support to help you with any problems you might face or any clarifications you may require during the course. 3. You will get Lifetime Access to the recordings in the LMS. 4. At the end of the training you will have to complete the project based on which we will provide you a Verifiable Certificate! - - - - - - - - - - - - - - About the Course Edureka's Data Science course will cover the whole data life cycle ranging from Data Acquisition and Data Storage using R-Hadoop concepts, Applying modelling through R programming using Machine learning algorithms and illustrate impeccable Data Visualization by leveraging on 'R' capabilities. - - - - - - - - - - - - - - Why Learn Data Science? Data Science training certifies you with ‘in demand’ Big Data Technologies to help you grab the top paying Data Science job title with Big Data skills and expertise in R programming, Machine Learning and Hadoop framework. After the completion of the Data Science course, you should be able to: 1. Gain insight into the 'Roles' played by a Data Scientist 2. Analyse Big Data using R, Hadoop and Machine Learning 3. Understand the Data Analysis Life Cycle 4. Work with different data formats like XML, CSV and SAS, SPSS, etc. 5. Learn tools and techniques for data transformation 6. Understand Data Mining techniques and their implementation 7. Analyse data using machine learning algorithms in R 8. Work with Hadoop Mappers and Reducers to analyze data 9. Implement various Machine Learning Algorithms in Apache Mahout 10. Gain insight into data visualization and optimization techniques 11. Explore the parallel processing feature in R - - - - - - - - - - - - - - Who should go for this course? The course is designed for all those who want to learn machine learning techniques with implementation in R language, and wish to apply these techniques on Big Data. The following professionals can go for this course: 1. Developers aspiring to be a 'Data Scientist' 2. Analytics Managers who are leading a team of analysts 3. SAS/SPSS Professionals looking to gain understanding in Big Data Analytics 4. Business Analysts who want to understand Machine Learning (ML) Techniques 5. Information Architects who want to gain expertise in Predictive Analytics 6. 'R' professionals who want to captivate and analyze Big Data 7. Hadoop Professionals who want to learn R and ML techniques 8. Analysts wanting to understand Data Science methodologies For more information, Please write back to us at [email protected] or call us at IND: 9606058406 / US: 18338555775 (toll free). Instagram: https://www.instagram.com/edureka_learning/ Facebook: https://www.facebook.com/edurekaIN/ Twitter: https://twitter.com/edurekain LinkedIn: https://www.linkedin.com/company/edureka Customer Reviews: Gnana Sekhar Vangara, Technology Lead at WellsFargo.com, says, "Edureka Data science course provided me a very good mixture of theoretical and practical training. The training course helped me in all areas that I was previously unclear about, especially concepts like Machine learning and Mahout. The training was very informative and practical. LMS pre recorded sessions and assignmemts were very good as there is a lot of information in them that will help me in my job. The trainer was able to explain difficult to understand subjects in simple terms. Edureka is my teaching GURU now...Thanks EDUREKA and all the best. "
Views: 62714 edureka!
Random Forest in R - Classification and Prediction Example with Definition & Steps
 
30:30
Provides steps for applying random forest to do classification and prediction. R code file: https://goo.gl/AP3LeZ Data: https://goo.gl/C9emgB Machine Learning videos: https://goo.gl/WHHqWP Includes, - random forest model - why and when it is used - benefits & steps - number of trees, ntree - number of variables tried at each step, mtry - data partitioning - prediction and confusion matrix - accuracy and sensitivity - randomForest & caret packages - bootstrap samples and out of bag (oob) error - oob error rate - tune random forest using mtry - no. of nodes for the trees in the forest - variable importance - mean decrease accuracy & gini - variables used - partial dependence plot - extract single tree from the forest - multi-dimensional scaling plot of proximity matrix - detailed example with cardiotocographic or ctg data random forest is an important tool related to analyzing big data or working in data science field. Deep Learning: https://goo.gl/5VtSuC Image Analysis & Classification: https://goo.gl/Md3fMi R is a free software environment for statistical computing and graphics, and is widely used by both academia and industry. R software works on both Windows and Mac-OS. It was ranked no. 1 in a KDnuggets poll on top languages for analytics, data mining, and data science. RStudio is a user friendly environment for R that has become popular.
Views: 66541 Bharatendra Rai
Data Science Tutorial | Creating Text Classifier Model using Naive Bayes Algorithm
 
20:28
In this third video text analytics in R, I've talked about modeling process using the naive bayes classifier that helps us creating a statistical text classifier model which helps classifying the data in ham or spam sms message. You will see how you can tune the parameters also and make the best use of naive bayes classifier model.
Machine Learning Algorithms | Machine Learning Tutorial | Data Science Training | Edureka
 
45:16
( Data Science Training - https://www.edureka.co/data-science ) This Machine Learning Algorithms Tutorial shall teach you what machine learning is, and the various ways in which you can use machine learning to solve a problem! Towards the end, you will learn how to prepare a dataset for model creation and validation and how you can create a model using any machine learning algorithm! In this Machine Learning Algorithms Tutorial video you will understand: 1) What is an Algorithm? 2) What is Machine Learning? 3) How is a problem solved using Machine Learning? 4) Types of Machine Learning 5) Machine Learning Algorithms 6) Demo Subscribe to our channel to get video updates. Hit the subscribe button above. Check our complete Data Science playlist here: https://goo.gl/60NJJS #MachineLearningAlgorithms #Datasciencetutorial #Datasciencecourse #datascience How it Works? 1. There will be 30 hours of instructor-led interactive online classes, 40 hours of assignments and 20 hours of project 2. We have a 24x7 One-on-One LIVE Technical Support to help you with any problems you might face or any clarifications you may require during the course. 3. You will get Lifetime Access to the recordings in the LMS. 4. At the end of the training you will have to complete the project based on which we will provide you a Verifiable Certificate! - - - - - - - - - - - - - - About the Course Edureka's Data Science course will cover the whole data life cycle ranging from Data Acquisition and Data Storage using R-Hadoop concepts, Applying modelling through R programming using Machine learning algorithms and illustrate impeccable Data Visualization by leveraging on 'R' capabilities. - - - - - - - - - - - - - - Why Learn Data Science? Data Science training certifies you with ‘in demand’ Big Data Technologies to help you grab the top paying Data Science job title with Big Data skills and expertise in R programming, Machine Learning and Hadoop framework. After the completion of the Data Science course, you should be able to: 1. Gain insight into the 'Roles' played by a Data Scientist 2. Analyse Big Data using R, Hadoop and Machine Learning 3. Understand the Data Analysis Life Cycle 4. Work with different data formats like XML, CSV and SAS, SPSS, etc. 5. Learn tools and techniques for data transformation 6. Understand Data Mining techniques and their implementation 7. Analyse data using machine learning algorithms in R 8. Work with Hadoop Mappers and Reducers to analyze data 9. Implement various Machine Learning Algorithms in Apache Mahout 10. Gain insight into data visualization and optimization techniques 11. Explore the parallel processing feature in R - - - - - - - - - - - - - - Who should go for this course? The course is designed for all those who want to learn machine learning techniques with implementation in R language, and wish to apply these techniques on Big Data. The following professionals can go for this course: 1. Developers aspiring to be a 'Data Scientist' 2. Analytics Managers who are leading a team of analysts 3. SAS/SPSS Professionals looking to gain understanding in Big Data Analytics 4. Business Analysts who want to understand Machine Learning (ML) Techniques 5. Information Architects who want to gain expertise in Predictive Analytics 6. 'R' professionals who want to captivate and analyze Big Data 7. Hadoop Professionals who want to learn R and ML techniques 8. Analysts wanting to understand Data Science methodologies For more information, Please write back to us at [email protected] or call us at IND: 9606058406 / US: 18338555775 (toll free). Instagram: https://www.instagram.com/edureka_learning/ Facebook: https://www.facebook.com/edurekaIN/ Twitter: https://twitter.com/edurekain LinkedIn: https://www.linkedin.com/company/edureka Customer Reviews: Gnana Sekhar Vangara, Technology Lead at WellsFargo.com, says, "Edureka Data science course provided me a very good mixture of theoretical and practical training. The training course helped me in all areas that I was previously unclear about, especially concepts like Machine learning and Mahout. The training was very informative and practical. LMS pre recorded sessions and assignmemts were very good as there is a lot of information in them that will help me in my job. The trainer was able to explain difficult to understand subjects in simple terms. Edureka is my teaching GURU now...Thanks EDUREKA and all the best. "
Views: 172842 edureka!
Support Vector Machine in R | SVM Algorithm Example | Data Science With R Tutorial | Simplilearn
 
21:03
This Support Vector Machine in R tutorial video will help you understand what is Machine Learning, what is classification, what is Support Vector Machine (SVM), what is SVM kernel and you will also see a use case in which we will classify horses and mules from a given data set using SVM algorithm. SVM is a method of classification in which you plot raw data as points in an n-dimensional space (where n is the number of features you have). The value of each feature is then tied to a particular coordinate, making it easy to classify the data. Lines called classifiers can be used to split the data and plot them on a graph. SVM is a classification algorithm used to assign data to various classes. They involve detecting hyperplanes which segregate data into classes. SVMs are very versatile and are also capable of performing linear or nonlinear classification, regression, and outlier detection. Now, let us get started and understand Support Vector Machine in detail. Below topics are explained in this "Support Vector Machine in R" video: 1. What is machine learning? 2. What is classification? 3. What is support vector machine? 4. Understanding support vector machine 5. Understanding SVM kernel 6. Use case: classifying horses and mules To learn more about Data Science, subscribe to our YouTube channel: https://www.youtube.com/user/Simplilearn?sub_confirmation=1 You can also go through the Slides here: https://goo.gl/w72XBR Watch more videos on Data Science: https://www.youtube.com/watch?v=0gf5iLTbiQM&list=PLEiEAq2VkUUIEQ7ENKU5Gv0HpRDtOphC6 #DataScienceWithR #DataScienceCourse #DataScience #DataScientist #BusinessAnalytics #MachineLearning Become an expert in data analytics using the R programming language in this data science certification training course. You’ll master data exploration, data visualization, predictive analytics and descriptive analytics techniques with the R language. With this data science course, you’ll get hands-on practice on R CloudLab by implementing various real-life, industry-based projects in the domains of healthcare, retail, insurance, finance, airlines, music industry, and unemployment. Why learn Data Science with R? 1. This course forms an ideal package for aspiring data analysts aspiring to build a successful career in analytics/data science. By the end of this training, participants will acquire a 360-degree overview of business analytics and R by mastering concepts like data exploration, data visualization, predictive analytics, etc 2. According to marketsandmarkets.com, the advanced analytics market will be worth $29.53 Billion by 2019 3. Wired.com points to a report by Glassdoor that the average salary of a data scientist is $118,709 4. Randstad reports that pay hikes in the analytics industry are 50% higher than IT The Data Science Certification with R has been designed to give you in-depth knowledge of the various data analytics techniques that can be performed using R. The data science course is packed with real-life projects and case studies, and includes R CloudLab for practice. 1. Mastering R language: The data science course provides an in-depth understanding of the R language, R-studio, and R packages. You will learn the various types of apply functions including DPYR, gain an understanding of data structure in R, and perform data visualizations using the various graphics available in R. 2. Mastering advanced statistical concepts: The data science training course also includes various statistical concepts such as linear and logistic regression, cluster analysis and forecasting. You will also learn hypothesis testing. 3. As a part of the data science with R training course, you will be required to execute real-life projects using CloudLab. The compulsory projects are spread over four case studies in the domains of healthcare, retail, and the Internet. Four additional projects are also available for further practice. The Data Science with R is recommended for: 1. IT professionals looking for a career switch into data science and analytics 2. Software developers looking for a career switch into data science and analytics 3. Professionals working in data and business analytics 4. Graduates looking to build a career in analytics and data science 5. Anyone with a genuine interest in the data science field 6. Experienced professionals who would like to harness data science in their fields Learn more at: https://www.simplilearn.com/big-data-and-analytics/data-scientist-certification-sas-r-excel-training?utm_campaign=Support-Vector-Machine-in-R-QkAmOb1AMrY&utm_medium=Tutorials&utm_source=youtube For more information about Simplilearn courses, visit: - Facebook: https://www.facebook.com/Simplilearn - Twitter: https://twitter.com/simplilearn - LinkedIn: https://www.linkedin.com/company/simplilearn/ - Website: https://www.simplilearn.com Get the Android app: http://bit.ly/1WlVo4u Get the iOS app: http://apple.co/1HIO5J0
Views: 9141 Simplilearn
Data Science - Part XIV - Genetic Algorithms
 
01:33:50
For downloadable versions of these lectures, please go to the following link: http://www.slideshare.net/DerekKane/presentations https://github.com/DerekKane/YouTube-Tutorials This lecture provides an overview on biological evolution and genetic algorithms in a machine learning context. We will start off by going through a broad overview of the biological evolutionary process and then explore how genetic algorithms can be developed that mimic these processes. We will dive into the types of problems that can be solved with genetic algorithms and then we will conclude with a series of practical examples in R which highlights the techniques: The Knapsack Problem, Feature Selection and OLS regression, and constrained optimizations.
Views: 23806 Derek Kane
Heuristic Discretization Algorithm, Data Analytics, KDD, Data Processing
 
15:21
For this video, I will be talking about one of the algorithms used to discretize datasets. Discretizing a dataset is the act of reducing the number of discrete values so that it can be more easily analyzed. This method uses heuristics and discernibility formulas.
Views: 3344 Laurel Powell
eXtreme Gradient Boosting XGBoost Algorithm with R - Example in Easy Steps with One-Hot Encoding
 
28:57
Provides easy to apply example of eXtreme Gradient Boosting XGBoost Algorithm with R . Data: https://goo.gl/VoHhyh R file: https://goo.gl/qFPsmi Machine Learning videos: https://goo.gl/WHHqWP Includes, - Packages needed and data - Partition data - Creating matrix and One-Hot Encoding for Factor variables - Parameters - eXtreme Gradient Boosting Model - Training & test error plot - Feature importance plot - Prediction & confusion matrix for test data - Booster parameters R is a free software environment for statistical computing and graphics, and is widely used by both academia and industry. R software works on both Windows and Mac-OS. It was ranked no. 1 in a KDnuggets poll on top languages for analytics, data mining, and data science. RStudio is a user friendly environment for R that has become popular.
Views: 23575 Bharatendra Rai
Naive Bayes Classifier | Naive Bayes Algorithm | Naive Bayes Classifier With Example | Simplilearn
 
43:45
This Naive Bayes Classifier tutorial video will introduce you to the basic concepts of Naive Bayes classifier, what is Naive Bayes and Bayes theorem, conditional probability concepts used in Bayes theorem, where is Naive Bayes classifier used, how Naive Bayes algorithm works with solved examples, advantages of Naive Bayes. By the end of this video, you will also implement Naive Bayes algorithm for text classification in Python. The topics covered in this Naive Bayes video are as follows: 1. What is Naive Bayes? ( 01:06 ) 2. Naive Bayes and Machine Learning ( 05:45 ) 3. Why do we need Naive Bayes? ( 05:46 ) 4. Understanding Naive Bayes Classifier ( 06:30 ) 5. Advantages of Naive Bayes Classifier ( 20:17 ) 6. Demo - Text Classification using Naive Bayes ( 22:36 ) To learn more about Machine Learning, subscribe to our YouTube channel: https://www.youtube.com/user/Simplilearn?sub_confirmation=1 You can also go through the Slides here: https://goo.gl/Cw9wqy #NaiveBayes #MachineLearningAlgorithms #DataScienceCourse #DataScience #SimplilearnMachineLearning - - - - - - - - Simplilearn’s Machine Learning course will make you an expert in Machine Learning, a form of Artificial Intelligence that automates data analysis to enable computers to learn and adapt through experience to do specific tasks without explicit programming. You will master Machine Learning concepts and techniques including supervised and unsupervised learning, mathematical and heuristic aspects, hands-on modeling to develop algorithms and prepare you for the role of Machine Learning Engineer Why learn Machine Learning? Machine Learning is rapidly being deployed in all kinds of industries, creating a huge demand for skilled professionals. The Machine Learning market size is expected to grow from USD 1.03 billion in 2016 to USD 8.81 billion by 2022, at a Compound Annual Growth Rate (CAGR) of 44.1% during the forecast period. You can gain in-depth knowledge of Machine Learning by taking our Machine Learning certification training course. With Simplilearn’s Machine Learning course, you will prepare for a career as a Machine Learning engineer as you master concepts and techniques including supervised and unsupervised learning, mathematical and heuristic aspects, and hands-on modeling to develop algorithms. Those who complete the course will be able to: 1. Master the concepts of supervised, unsupervised and reinforcement learning concepts and modeling. 2. Gain practical mastery over principles, algorithms, and applications of Machine Learning through a hands-on approach which includes working on 28 projects and one capstone project. 3. Acquire thorough knowledge of the mathematical and heuristic aspects of Machine Learning. 4. Understand the concepts and operation of support vector machines, kernel SVM, Naive Bayes, decision tree classifier, random forest classifier, logistic regression, K-nearest neighbors, K-means clustering and more. 5. Model a wide variety of robust Machine Learning algorithms including deep learning, clustering, and recommendation systems The Machine Learning Course is recommended for: 1. Developers aspiring to be a data scientist or Machine Learning engineer 2. Information architects who want to gain expertise in Machine Learning algorithms 3. Analytics professionals who want to work in Machine Learning or artificial intelligence 4. Graduates looking to build a career in data science and Machine Learning Learn more at: https://www.simplilearn.com/big-data-and-analytics/machine-learning-certification-training-course?utm_campaign=Naive-Bayes-Classifier-l3dZ6ZNFjo0&utm_medium=Tutorials&utm_source=youtube For more information about Simplilearn’s courses, visit: - Facebook: https://www.facebook.com/Simplilearn - Twitter: https://twitter.com/simplilearn - LinkedIn: https://www.linkedin.com/company/simp... - Website: https://www.simplilearn.com Get the Android app: http://bit.ly/1WlVo4u Get the iOS app: http://apple.co/1HIO5J0
Views: 45527 Simplilearn
Support Vector Machine (SVM) with R - Classification and Prediction Example
 
16:57
Includes an example with, - brief definition of what is svm? - svm classification model - svm classification plot - interpretation - tuning or hyperparameter optimization - best model selection - confusion matrix - misclassification rate Machine Learning videos: https://goo.gl/WHHqWP svm is an important machine learning tool related to analyzing big data or working in data science field. R is a free software environment for statistical computing and graphics, and is widely used by both academia and industry. R software works on both Windows and Mac-OS. It was ranked no. 1 in a KDnuggets poll on top languages for analytics, data mining, and data science. RStudio is a user friendly environment for R that has become popular.
Views: 41401 Bharatendra Rai
Incremental Subspace Data-Mining Algorithm Based on Data-flow Density of Complex Networks
 
05:45
Lijuan L. Incremental Subspace Data-Mining Algorithm Based on Data-flow Density of Complex Networks. Journal of Networks, 2014. 9(11): 3175-3180 Shazmeen SF, Baig M M A, Pawar M R. Performance Evaluation of Different Data Mining Classification Algorithm and Predictive Analysis. Journal of Computer Engineering, 2013, 10(6): 01-06. Chen Y G. On-line fast kernel based methods for classification over stream data (with case studies for cyber-security). Auckland University of Technology. 2012.
Views: 180 Leilani Lotti
Linear Regression in R | Linear Regression Model in R | R Programming Tutorial | Edureka
 
01:20:45
This R tutorial gives an introduction to Linear Regression in R tool. This R tutorial is specially designed to help beginners. View upcoming batches schedule: http://goo.gl/BJJn0B This video helps you understand: • What is Data Mining? • What is Business Analytics? • Stages of Analytics / data mining • What is R? • Overview of Machine Learning • What is Linear Regression? • Case Study The topics related to ‘Data Analytics with R’ have been widely covered in our course. For more information, please write back to us at [email protected] or call us at IND: 9606058406 / US: 18338555775 (toll-free).
Views: 36802 edureka!